
Virtualizing the TCU of BMW's 8 speed transmission

Rui Gaspar, Benno Wiesner, Gunther Bauer

Abstract
Virtualization allows the simulation of automotive ECUs on Windows PC in closed-
loop with a vehicle simulation model. This has a great potential to improve the devel-
opment process for ECUs, because it allows to move several development tasks
from road, test rigs and HiL (Hardware in the loop) to PCs, where they can be per -
formed faster and cheaper. In this paper, we report the implementation of this idea
for the case of BMW's 8 speed transmission ZF 8HP. The technical challenge is:
How to port ECU tasks and basic software to Windows PC with reasonable effort, so
that key development tasks can be performed on a PC, without the need of access-
ing real hardware such as vehicle prototypes, test rigs or HiL facilities. Since different
parties (OEM and suppliers) jointly developed the TCU, the protection of intellectual
property (models and source code) required special attention as well.

1. Introduction: Simulation used to speed-up development

Automotive control software is of often jointly developed by an OEM and suppliers as
shown in Fig 1. Typically, a team of function developers uses a model-based tool
chain to develop a model of the ECU and to generate C code from that. The resulting
C code is then compiled for the target processor, and the resulting ECU is validated

Fig. 1: Development process for automotive software

1

10th Symposium on Automotive Powertrain Control Systems, 11. - 12. September 2014, Berlin

and tested using test rigs, HiL systems, and road tests. The test and validation res-
ults are fed back to the developers, which closes the development cycle. This pro-
cess, although standard in the automotive industry today, has two major drawbacks:

 a single iteration takes days or weeks: feedback reaches developers late
 the process depends on prototype vehicles and test rigs. These are typically

scarce and expensive resources during development. Their limited availability
causes additional delays during development.

This paper demonstrates how to improve the process. The key idea is to provide
each development engineer with a virtual ECU. This can be simulated, calibrated
and measured on the developer's laptop - either in closed-loop with a vehicle simula-
tion model, or in real-time for rapid control prototyping. This way, more development
tasks can be performed faster and cheaper on the developer's laptop. As experience
shows, this helps to shorten development cycles and to reduce the critical depend-
ency on scarce resources and real hardware.

There are two main options to set up a virtual ECU on PC:
 Re-host the native binary code using chip simulation. The native ECU code

(binary) is executed on PC by emulating the instruction set of the ECU pro-
cessor [3]. This requires no access to the C code.

 Re-target the C code. Compile the C code of the ECU for execution on
Windows PC. Obviously, this requires access to the C code to build a
Windows executable or DLL.

The paper is structured as follows: In the next section, we describe how we have vir -
tualized the transmission controller of the ZF HP8 automatic transmission, and list
key differences between the real and the virtual TCU. Section 3 presents some ap-
plications of this virtualization. Section 4 concludes with a brief outlook on future
work.

2. Virtualization of the ZF 8HP automatic transmission

The ZF 8HP is an eight-speed automatic transmission. The eight gears are imple-
mented using four planetary gear-sets controlled by five hydraulically operated brake
and clutch elements as shown in Fig. 2.

Fig. 2: Gears and possible gear shifts of the ZF 8HP 8-speed transmission

2

2.1 Virtualizing the transmission control unit

The shift strategy of a transmissions is often developed by an OEM, while the re-
maining control software comes from a supplier. For the ZF 8HP transmission con-
sidered here, about 30% of the shift strategy module is generated with TargetLink
from a model developed with MATLAB/Simulink. The remaining part of that module
is hand-coded using C.

We used the virtual ECU tool Silver [2] to re-target the entire control code as a
Windows dynamic link library (dll). We could have used Silver's chip simulator [3] as
well, but decided to use here the variant based on re-targeting for two reasons:

 Re-targeted code runs about 10 times faster on a PC than a corresponding
chip simulation. Therefore, chip simulation is most useful in cases where re-
targeting the C code is not possible.

 The control software for the 8HP transmission was partly developed using the
virtual ECU tool SoftCar [1]. For that reason, a re-targeted version of the con-
trol software was already available as Windows libraries (.lib files created with
MS Visual Studio).

Silver provides a framework for re-targeting control code to Windows. This frame-
work, called Silver Basis Software (SBS), uses the same source files that are avail -
able during the normal ECU development, but bypasses the original basic software
of the ECU with services supplied by Silver:

 The RTOS is replaced by a simple execution loop in Silver. This runs tasks
either initially, periodically with defined offsets, or at certain events (interrupts).

 The DBC files describing the CAN communication of the ECU are used to
emulate CAN processing.

 The ASAP2/A2L file describing all tunable and all measurable variables of the
ECU is used to bypass analogue input and output processing of the ECU. For
example, instead of simulating the low-level processing of a certain pulse-
width modulated (PWM) signal that encodes the target current for a magnetic
valve, we directly use the corresponding high-level current variable. This might
be a 16-bit unsigned integer, which - after application of an associated scaling
rule - represents the target current in Ampere. The scaling rule is part of the
A2L description of the integer variable. Silver knows how to apply directly and
how to invert the rule, and uses this to automatically convert the raw integer
values to physically meaningful values during simulation (and vice-versa). This
way, low-level processing of the basic software can be easily bypassed. In our
example, the target current in Ampere is directly fed into the simulation model
of the magnetic valve, which is part of the vehicle model described in section
2.3. A similar mechanism is used to bypass the low-level stages (AD conver-
sion, signal filters) used for sensor value acquisition.

We used the above framework to re-target the AGS module of the TCU, based on
the C code, both hand-coded and generated. This took us about three person days.
To validate the result in Silver, the re-targeted AGS module was then simulated us-
ing measured inputs. The PC simulation commanded exactly the same gear shifts as
those measured in the real vehicle. Encouraged by this quick success, we re-tar-
geted then the entire TCU, based on the Windows library received from ZF.

3

2.2 Key differences between real and virtual ECUs

Fig. 3 a shows the execution of a 10 ms task on a real ECU. Every 10 ms, the task is
started by the RTOS, and terminates in time, before the next cycle. At t = 23 ms, the
task is interrupted by an event-triggered task. At that time, the context of the interrup-
ted task (current register content or the CPU) is saved, the interrupt handler runs,
and after that, the context is restored and the interrupted task is continued.

Fig. 3 b shows the execution of the same task on a virtual ECU as generated with
Silver. The simulated time is a special variable of the simulation environment and it is
not (necessarily) related to the real clock time. Execution of a task is assumed to
take zero simulation time here: Simulation does not try to predict how long the exe-
cution of the tasks will take on the real ECU, and assumes infinitely fast execution in-
stead. As a consequence, a running task cannot be interrupted on a virtual ECU, and
all tasks run exactly as scheduled.

Fig. 3: Task execution on a real and on a virtual ECU

The above discussion makes clear that detailed timing and processor/bus load ana-
lyses cannot be performed with our virtual ECU environment. Such analyses must be
performed with real ECUs and real bus-loads.

On the other side, certain analysis tasks cannot be easily performed using real ECUs
- due to real-time limitations. Functional analysis is much easier performed in simula-
tion:

 in contrast to a real ECU, a virtual ECU does not limit the number of variables
that can be measured simultaneously. This eases detailed investigation of
ECU behaviour. In Silver, all measurable variables listed in the A2L file are
measured simultaneously during simulation.

 a real ECU limits the memory available for program code and data (typical
size: 4 MB), while a virtual ECU might use the entire address space (typical
size: 4 GB). With a virtual ECU, new functions can be virtually explored
without considering memory constraints.

 a real ECU must run in real-time, while a virtual ECU is free to run faster or
slower than real time. Execution might even be halted to step, debug and in-
sert faults. This independence of real time enables coupling of virtual ECUs
with very fast (much faster than real time) or very detailed (not real-time cap-

4

able) plant models, or coupling with a source-level debugger (breakpoints,
stepper).

To summarize: for some development tasks (e.g. measuring execution times), it is
better to use a real ECU; for other tasks (such as debugging or running functional
tests or optimization procedures), it is more convenient to use a virtual ECU.

2.3 Closing the loop: The vehicle and the transmission model

After having virtualized the entire TCU code, we coupled the virtual ECU with two ex-
isting plant models provided by ZF: a vehicle model that includes a detailed model of
the 8HP transmission, developed with Modelica and exported as FMU for Co-Simu-
lation 1.0 [4], and a model of the transmission hydraulics developed independently
with MATLAB/Simulink and exported as mew32 file. Both models run in Silver with
communication period of 1 ms.

The added vehicle model enables closed-loop simulation of the TCU on PC, includ-
ing the validation of calibration data: Silver provides functions to 'flash' calibration
files (ETAS DCM, Vector PAR, Intel HEX) into the virtual ECU.

Fig. 4: Open-loop simulation of the ZF 8HP transmission in Silver

3. Return on invest: Applications of the virtualized transmission

Virtual ECUs do not come for free: As shown above, setting up an ECU simulation
requires certain investments and efforts, which must be justified by later applications
that return these investments.

5

The PC simulation of the 8HP transmission system can be used as follows:

Open-loop analysis of measurements on PC: Use measurements (e.g. a MDF or
DAT file) taken on the road or on test rig to drive the virtual ECU on PC. This way it
becomes possible to look at all TCU variables in detail (lets say, 100.000). This gives
a fairly complete picture of the ECU behaviour. This usage of a virtual ECU is the
easiest to implement because it does not require any vehicle model.

Debugging on C source level: Attach the MS Visual Studio debugger to the virtual
ECU running in Silver to debug problems on C code level. On a real ECU, a runtime
exception like an integer division by zero or a memory access violation will typically
trigger an ECU reset. These kinds of problems are difficult to catch and analyse in
real-time environments, e.g. on a HiL system or on the road. With the virtual ECU,
there is no real-time constraint: Simulation can be stopped to inspect variables, call
stack, to modify variable settings and to resume simulation. This works equally well
with open-loop simulation (as above) and with closed-loop simulation.

Pre-calibration: Closed-loop simulation of TCU and vehicle model on PC allows us to
start calibration much earlier during development, before transmission or vehicle pro-
totypes or real ECU hardware are available. This way, better initial settings for tun-
able parameters of the TCU can be provided, which speeds up later calibration
stages using real vehicles. Silver virtual ECUs support coupling with calibration tools
such as INCA (ETAS) and CANape (Vector) via XCP on TCP/IP. This means that
calibration engineers can use the same tooling for pre-calibration on PC and later for
calibration on the road.

Virtual HiL on a laptop: System test with virtual ECUs [5]. The idea is to move certain
tests from the expensive HiL environment to cheap and highly available PCs, using
closed-loop simulation with a virtual ECU. Based on the quality of our current virtual -
ization, we estimate that this can be done for most of our test cases. The tests using
the virtual platform has additional advantages that are not achievable using real
ECUs and HiLs:

 All internal measurable ECU and plant model signals can be continuously
measured without band-width limitations.

 The test results are 100% reproducible. Even software failures such as divi-
sion-by-zero, access violations, that reset the real ECU, can be easily repro-
duced and analysed.

 The simulation can run faster than real-time. Several simulations can be easily
conducted in parallel on several PCs or on the same multi-core PC.

 The simulation can use, when necessary, detailed plant models that are not
able to run in real time on a HiL – all physical effects that are relevant for the
system can be simulated for a complete functional validation.

 All development, test and calibration engineers involved in a project at the
OEM or at the supplier site can load and run a virtual system simulation on
their laptop. Integration and system tests are faster and more comprehensive
due to this parallelization of work.

6

4. Conclusion

We reported how we virtualized the controller for the ZF 8HP transmission for
closed-loop simulation on Windows PC, using the virtual ECU tool Silver. We intend
to improve and to extend this set-up in order to perform more and more development
tasks faster and cheaper on standard Windows PCs.

References

[1] Bieber, E.; Gillich, U.; Neumann, M.; Paulus, C.; Welt, C.: Systematische Ab-
sicherung von Steuerungssoftware für Hybridsysteme bei ZF. In: Simulation und
Test für die Automobilelektronik III, pp. 333, expert Verlag, 2010.

[2] Junghanns, A.; Mauss, J.: Faster Development of AUTOSAR-compliant ECUs
Through Simulation. Embedded Real Time Software and Systems. ERTS-2014,
Toulouse, 05 - 07.02.2014. https://qtronic.de/doc/ERTS_2014_autosar_sil.pdf

[3] Mauss, J.: Chip Simulation used to Run Automotive Software on PC. Embed-
ded Real Time Software and Systems. ERTS-2014, Toulouse, 05 - 07.02.2014.
https://qtronic.de/doc/ERTS_2014_chip_simulation.pdf

[4] FMI for Co-Simulation 1.0, released 12.10.2010, see https://fmi-standard.org

[5] Tatar, M.; Mauss, J.: Systematic Test and Validation of Complex Embedded
Systems. Embedded Real Time Software and Systems - ERTS-2014, Toulouse,
05 – 07.02.2014. https://qtronic.de/doc/ERTS_2014_TestWeaver_Paper.pdf

7

